首页 | 期刊简介 | 编辑部 | 广告部 | 发行部 | 在线投稿 | 联系我们 | 产品信息索取
2025年1月24日星期五
2011年第01期
 
2010年第12期
 
2010年第11期
2010年第11期
 
2010年第10期
2010年第10期
 
2010年第09期
2010年第09期
 
2010年第09期
2010年第08期
 
2010年第07期
2010年第07期
 
2010年第06期
2010年第06期
 
2010年第05期
2010年第05期
 
2010年第04期
2010年第04期
 
2010年第03期
2010年第03期
 
2010年第02期
2010年第02期
 
2010年第01期
2010年第01期
 
2009年第12期
2009年第12期
 
2009年第11期
2009年第11期
 
2009年第10期
2009年第10期
 
2009年第9期
2009年第9期
 
2009年第8期
2009年第8期
 
2009年第7期
2009年第7期
 
2009年第6期
2009年第6期
 
2009年第5期
2009年第5期
 
2009年第4期
2009年第4期
 
2009年第3期
2009年第3期
 
2009年第2期
2009年第2期
 
2009年第1期
2009年第1期
 
2008年第12期
2008年第12期
 
2008年第11期
2008年第11期
 
2008年第10期
2008年第10期
 
2008年第9期
2008年第9期
 
2008年第8期
2008年第8期
 
2008年第7期
2008年第7期
 
2008年第6期
2008年第6期
 
2008年第5期
2008年第5期
 
2008年第4期
2008年第4期
 
2008年第3期
2008年第3期
 
2008年第2期
2008年第2期
 
2008年第1期
2008年第1期
数字温度传感器DS18B20的原理与应用
Theory and Application of DS18B20
■山东潍坊学院信息与控制工程系 马云峰
DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DS18B20非常适合于远距离多点温度检测系统中。


DS18B20的内部结构


DS18B20内部结构如图1所示,主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如图2所示,DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

DS18B20中的温度传感器可完成对温度的测量,用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。

高低温报警触发器TH和TL、配置寄存器均由一个字节的EEPROM组成,使用一个存储器功能命令可对TH、TL或配置寄存器写入。其中配置寄存器的格式如下:

R1、R0决定温度转换的精度位数:R1R0="00",9位精度,最大转换时间93.75ms;R1R0="01",10位精度,最大转换时间187.5ms;R1R0="10",11位精度,最大转换时间375ms;R1R0="11",12位精度,最大转换时间750ms;未编程时默认为12位精度。

高速暂存器是一个9字节的存储器。开始两个字节包含被测温度的数字量信息;第3、4、5字节分别是TH、TL、配置寄存器的临时拷贝,每一次上电复位时被刷新;第6、7、8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。


DS18B20与单片机的典型接口设计


图2以MCS-51系列单片机为例,画出了DS18B20与微处理器的典型连接。图2(a)中DS18B20采用寄生电源方式,其VDD和GNG端均接地,图2(b)中DS18B20采用外接电源方式,其VDD端用3V~5.5V电源供电。

主机控制DS18B20完成温度转换必须经过三个步骤:初始化、ROM操作指令、存储器操作指令。必须先启动DS18B20开始转换,再读出温度转换值。假设一线仅挂接一个芯片,使用默认的12位转换精度,外接供电电源,可写出完成一次转换并读取温度值子程序GETWD。

GETWD:LCALL INIT
MOV A,#0CCH
LCALL WRITE;发跳过ROM命令
MOV A,#44H
LCALL WAITE;发启动转换命令
LCALL INIT
MOV A,#0CCH;发跳过ROM命令
LCALL WRITE
MOV A,#0BEH;发读存储器命令
LCALL READ
MOV WDLSB,A;温度值低位字节送WDLSB
LCALL READ
MOV WDMSB,A;温度值高位字节送WDMSB
……

子程序GETWD读取的温度值高位字节送WDMSB单元,低位字节送WDLSB单元,再按照温度值字节的表示格式及其符号位,经过简单的变换即可得到实际温度值。

如果一线上挂接多个DS18B20,采用寄生电源连接方式,需要进行转换精度配置,高低限报警等,则子程序GETWD的编写就要复杂一些。

我们已成功地将DS18B20应用于所开发的"家用采暖洗浴器"控制系统中,其转换速度快,转换精度高,与微处理器的接口简单,给硬件设计工作带来了极大的方便,可有效地降低成本,缩短开发周期。

         
版权所有《世界电子元器件》杂志社
地址:北京市海淀区上地东路35号颐泉汇 邮编:100085
电话:010-62985649
E-mail:dongmei@eccn.com